

TECHNICAL SPECIFICATIONS FOR TIG WELDING

A A MAL

Back To Table of Contents

www.CKWORLDWIDE.com MADE IN THE U.S.A. Phone: 1 (800) 426-0877

FORM 116 AUGUST 2015

FREE ONLINE TIG WELDING TRAINING

CK Worldwide offers an introduction to TIG torches, how they are made, and how to select the right torch for the job. Visit www.WELDTRAIN.com

Online Training for the Welding, Gases, and Safety Industry.

Free training – on your own time!

FIND US ON:

Product demonstrations, welding tips and more.

FOLLOW US:

@CKWWInc

INSTAGRAM: @ckworldwide

TABLE OF CONTENTS

TIG TORCH CONNECTION DIAGRAMS

Gas-Cooled Torches	3
Water-Cooled Torches	3

CHARACTERISTICS OF CURRENT TYPES FOR TIG WELDING

DC Straight Polarity	4
DC Reverse Polarity	4
AC High Frequency	4
Selecting Correct Torch Nozzle Material	5
Gas Lens Benefits	5

SHIELD GAS SELECTION AND USE

Guide For Shield Gas Flows, Current Settings, Cup Selection	6
Tungsten Electrode Tip Shapes and	
Current Ranges	6
Correct Torch and Rod Positioning	6

TUNGSTEN SELECTION AND PREPARATION

Tungsten Tip Preperation	7
Tungsten Extension	7
Tungsten Grinding	7
Color Code for Tungsten Electrodes	7

TUNGSTEN CHARACTERISTICS AND PENETRATION PROFILES

Tungsten Electrode Characteristics	8
Tungsten Electrode Current Ranges	8
Weld Penetration Profiles	9

TYPICAL MANUAL TIG WELDING PARAMETERS

10
10
10
11
11
11

TROUBLESHOOTING GUIDE FOR TIG WELDING

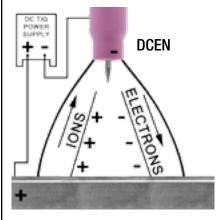
12
12
12
12
12
12
12
12

The information in this manual represents the best judgement of CK Worldwide, Inc. and is intended for use by experienced personnel. Never operate any equipment without carefully reading, understanding, and following all of the related safety rules and practices. CK Worldwide makes no claims, expressed or implied, as to the viability of this information for any application or use. The individual user is solely responsible for any and all uses of the information contained herein, since CK Worldwide has no means to confirm the correct use of, or control any of the variables to the use of any and all information herein.

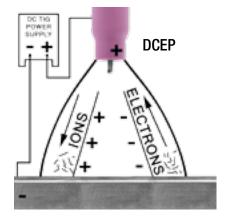
THE STANDARD IN TIG WELDING TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com

Follow us: You Tube

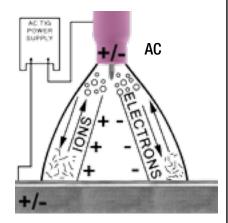
CONNECTION DIAGRAMS


THE STANDARD IN TIG WELDING TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com

Follow us: You Tube


Worldwide

CHARACTERISTICS OF CURRENT TYPES FOR GAS TUNGSTEN ARC WELDING


When TIG welding, there are three choices of welding current. They are: Direct Current Straight Polarity (DCSP), Direct Current Reverse Polarity (DCRP), and Alternating Current with or without High Frequency stabilization (ACHF). Each of these has its applications, advantages, and disadvantages. A look at each type and its uses will help the operator select the best current type for the job. The type of current used will have a great effect on the penetration pattern as well as the bead configuration. The diagrams below show arc characteristics of each current polarity type.

TIG WELDING DCSP Direct Current Straight Polarity produces deep penetration by concentrating heat in the joint area. No cleaning action occurs with this polarity.

TIG WELDING DCRP Direct Current Reverse Polarity produces the best cleaning action as the argon ions flowing towards the work strike with sufficient force to break up oxides on the surface.

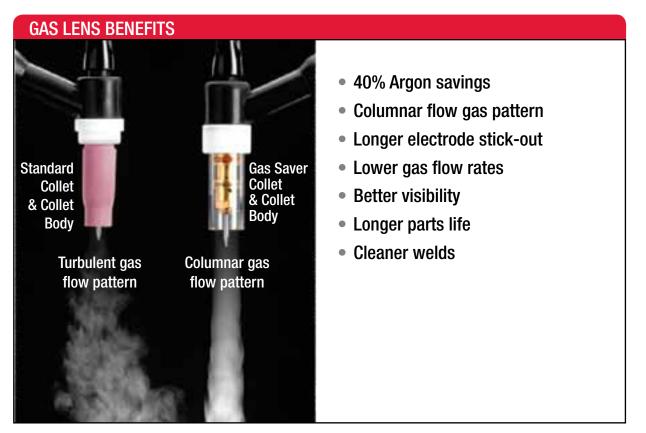
TIG WELDING WITH ACHF Alternating Current High Frequency combines the weld penetration on the negative half cycle with the cleaning action of the positive half cycle. High frequency re-establishes the arc which breaks each half cycle on transformer based machines.

CURRENT TYPE	DCSP
ELECTRODE POLARITY	Electrode negative
OXIDE CLEANING Action	No
HEAT BALANCE IN THE ARC	70% of work end 30% at electrode end
PENETRATION PROFILE	Deep narrow
ELECTRODE CAPACITY	Excellent

CURRENT TYPE	DCRP	
ELECTRODE POLARITY	Electrode positive	
OXIDE CLEANING Action	Yes	
HEAT BALANCE IN THE ARC	30% of work end 70% at electrode end	
PENETRATION PROFILE	Shallow wide	
ELECTRODE CAPACITY	Poor	

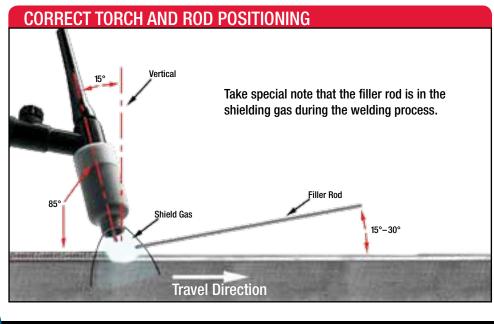
CURRENT TYPE	ACHF	
ELECTRODE POLARITY	Alternating	
OXIDE CLEANING Action	Yes (once every half cycle)	
HEAT BALANCE IN THE ARC	50% of work end 50% at electrode end	
PENETRATION PROFILE	Medium	
ELECTRODE CAPACITY	Good	

DCSP mainly used on: Stainless Steel, Mild Steel, Nickel, Copper, Titanium


ACHF mainly used on: Aluminum, Magnesium

DCRP mainly used on: Thin Material

THE STANDARD IN TIG WELDING TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com Follow us: You Tube

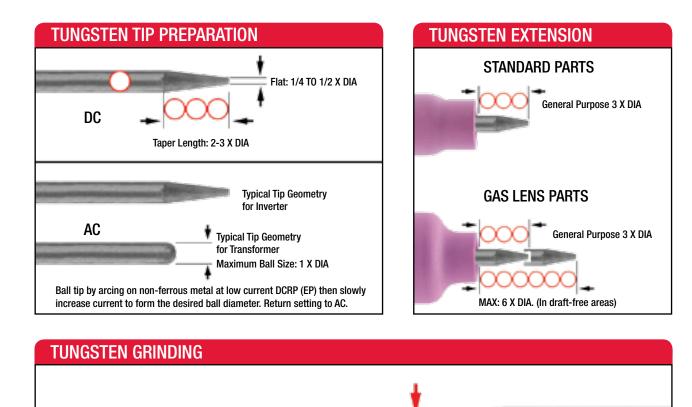

Back To Table of Contents

GUIDE FOR SHIELD GAS FLOWS, CURRENT SETTINGS & CUP SELECTION									
		WELDING CURRENT (AMPS) TUNGSTEN TYPE ARGON FLOW FERROUS ME		ERROUS METALS	ARGON FLOW ALUMINUM				
Electrode Diameter	Cup Size	AC Pure	AC Thoriated	DCSP Pure	DCSP Thoriated	Standard Body CFH (L/MN)	Gas Lens Body CFH (L/MN)	Standard Body CFH (L/MN)	Gas Lens Body CFH (L/MN)
.020" (0.5mm)	3, 4, or 5	5–15	5–20	5–15	5–20	5-8 (3-4)	5-8 (3-4)	5–8 (3–4)	5–8 (3–4)
.040" (1.0mm)	4 or 5	10–60	15-80	15–70	20-80	5–10 (3–5)	5-8 (3-4)	5–12 (3–6)	5–10 (3–5)
1/16" (1.6mm)	4, 5, or 6	50–100	70–150	70–130	80–150	7–12 (4–6)	5–10 (3–5)	8–15 (4–7)	7–12 (4–6)
3/32" (2.4mm)	6, 7, or 8	100–160	140–235	150–220	150–250	10–15 (5–7)	8–10 (4–5)	10–20 (5–10)	10–15 (5–7)
1/8" (3.2mm)	7, 8, or 10	150–210	220-325	220–330	240-350	10–18 (5–9)	8–12 (4–6)	12-25 (6-12)	10-20 (5-10)
5/32" (4.0mm)	8 or 10	200–275	300–425	375–475	400–500	15–25 (7–12)	10–15 (5–7)	15-30 (7-14)	12–25 (6–12)
3/16" (4.8mm)	8 or 10	250-350	400 – 525	475–800	475-800	20–35 (10–17)	12–25 (6–12)	25–40 (12–19)	15–30 (7–14)
1/4" (6.4mm)	10	325-700	500-700	750–1000	700–1000	25–50 (12–24)	20-35 (10-17)	30–55 (14–26)	25–45 (12–21)

For pure helium shielding gas, double flow rates shown. For argon-helium mixes with below 30% helium content, use figures shown. Always adjust gas flows to accommodate best shielding results.

UNGSTEN ELECTRODE TIP SHAPES AND CURRENT RANGES

ELECTRODE	DIAMETER	DIAMETER	R AT TIP		CURRENT	PULSED CURRENT
Millimeters	Inches	Millimeters	Inches	INCLUDED ANGLE	RANGE	RANGE
1.0mm	.040"	.125mm	.005"	12°	2–15 amps	2–25 amps
1.0mm	.040"	.250mm	.010"	20°	5–30 amps	5–60 amps
1.6mm	1/16"	.500mm	.020"	25°	8–50 amps	8–100 amps
1.6mm	1/16"	.800mm	.030"	30°	10–70 amps	10–140 amps
2.4mm	3/32"	.800mm	.030"	35°	12–90 amps	12–180 amps
2.4mm	3/32"	1.100mm	.045"	45°	15–150 amps	15–250 amps
3.2mm	1/8"	1.100mm	.045"	60°	20–200 amps	20–300 amps
3.2mm	1/8"	1.500mm	.060"	90°	25–250 amps	25–350 amps



TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com

Follow us: You Tube

f

Use a medium (60 grit or finer) aluminum oxide wheel.

- Grind longitudinally (never radially)
- Truncate (blunt) end
- Diameter of flat spot determines amperage capacity

The included angle determines weld bead shape and size. Generally, as the included angle increases, penetration increases and bead width decreases. *Refer to page 5

COLOR (CODE FOR 1	UNGSTEN ELECTRODES			
Desig	nation	Chemical Composition Impu	rities ≤0.1%		
ISO 6848	AWS A5.12	OXIDE ADDITIVE	TUNGSTEN	TIP COLOR	
WT20	EWTh-2	ThO ₂ : 1.70-2.20%	2% THORIATED	Red	
WP	EWP	~~~~~	PURE	Green	
WL15	EWLa-1.5	La0 ₂ : 1.30–1.70%	1.5% LANTHANATED	Gold	
WC20	EWCe-2	CeO ₂ : 1.80-2.20%	2% CERIATED	Gray	
WL20	EWLa-2	La ₂ O ₃ : 1.80-2.20%	2% LANTHANATED	Blue	
WZ8	EWZr-8	ZrO ₂ : 0.70–0.90%	0.8% ZIRCONIATED	White	
LaYZr™	EWG	La ₂ 0 ₃ : 1.3–1.7%; Y ₂ 0 ₃ : 0.06–0.10%; Zr0 ₂ : 0.6–1.0%	1.5% LANTHANATED 0.8% YTTRIATED 0.8% ZIRCONIATED	Chartreuse	

TUNGSTEN ELECTROD	E CHARACTE	RISTICS
Tungsten	Color Code	Characteristics
Pure	Green	Provides good arc stability for AC welding. Reasonably good resistance to contamination. Lowest current carrying capacity. Least expensive. Maintains a balled end. Used on transformer based machines only.
2% Ceriated	Gray	Similar performance to thoriated tungsten. Easy arc starting, good arc stability, long life. Possible replacement for thoriated.
2% Thoriated	Red	Easier arc starting. Higher current capacity. Greater arc stability. High resistance to weld pool contamination. Difficult to maintain balled end on AC.
1.5% Lanthanated 2% Lanthanated	Gold	Similar performance to thoriated tungsten. Easy arc starting, good arc stability, long life, high current capacity. 1.5% possible replacement for thoriated. 2% possible replacement for Pure.
.8% Zirconiated	White	Excellent for AC welding due to favorable retention of balled end, high resistance to contamination, and good arc starting. Preferred when tungsten contamination of weld is intolerable. Possible replacement for Pure.
LaYZr™	Chartreuse*	Best for use on automated or robotic applications. Runs cooler than 2% Thoriated with longer life. Low to medium amperage range.

*Substitute for Purple (Same oxide blend).

			TYPICAL CURRENT RANGE								
		Direct Current, DC		Alterna	ting Current, AC						
		DCEN	70%	Penetration	(50/50) Ba	lanced Wave, AC					
		Ceriated	Zirconiated	Ceriated	Zirconiated	Ceriated					
Tungsten Diameter in	Gas Cup (Inside	Thoriated		Thoriated	Pure	Thoriated					
inches (mm)	Diameter)	Lanthanated		Lanthanated	LaYZr™	Lanthanated					
		LaYZr™		LaYZr™		LaYZr™					
.040" (1.0mm)	#5 (3/8")	15–80 amps	20–60 amps	15–80 amps	10–30 amps	20–60 amps					
1/16" (1.6mm)	#5 (3/8")	70–150 amps	50–100 amps	70–150 amps	30–80 amps	60–120 amps					
3/32" (2.3mm)	#8 (1/2")	150-250 amps	100–160 amps	140–235 amps	60–130 amps	100–180 amps					
1/8" (3.2mm)	#8 (1/2")	250-400 amps	150–200 amps	225–325 amps	100–180 amps	160–250 amps					

equipment, and application. DCEN = Direct Current Electrode Negative (Straight Polarity)

THE STANDARD IN TIG WELDING TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com

WELD PENETRATIO	N PROFILE		
Gas Type	30° Angle .005" FLAT	60° Angle .010" FLAT	90° Angle .020" FLAT
100Ar 100% Argon			
75Ar-25He 75% Argon 25% Helium			
50Ar-50He 50% Argon 50% Helium			
25Ar-75He 25% Argon 75% Helium			
100He 100% Helium			
95Ar-5H 95% Argon 5% Hydrogen			

THE STANDARD IN TIG WELDING

TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com

Follow us: You Tube

ALUN	/INUN	/I (ACHF)						
METAL	JOINT	TUNGSTEN	FILLER ROD	CUP	SHIEL	D GAS FLO	N	WELDING	TRAVEL
GAUGE	TYPE	SIZE	SIZE	SIZE	TYPE	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16"	1/16"	AEC	ARGON	15 (7)	20	60–80	12" (307.2mm)
(1.6mm)	FILLET	(1.6mm)	(1.6mm)	(1.6mm) 4, 5, 6		15 (7)	20	70–90	10" (256mm)
1/8"	BUTT	3/32"	3/32" (2.4mm) 1/8" (3.2mm)	c 7	ARGON	17 (0)	20	125–145	12" (307.2mm)
(3.2mm)	FILLET	(2.4mm)	3/32" (2.4mm) 1/16" (1.6mm)	6, 7		17 (8)	20	140–160	10" (256mm)
3/16"	BUTT	1/8"	1/8" 1/8"		ARGON/	01 (10)	00	195–220	11" (258.6mm)
(4.8mm)	FILLET	(3.2mm)	(3.2mm)	7, 8	HELIUM	21 (10)	20	210–240	9" (230.4mm)
1/4"	BUTT	3/16"	1/8"	8, 10	ARGON/	25 (12)		260–300	10" (256mm)
(6.4mm)	FILLET	(4.8mm)	(3.2mm)	0, 10	HELIUM	25 (12)	20	280–320	8" (204.8mm)

WELDING ALUMINUM

The use of TIG welding for aluminum has many advantages for both manual and automatic processes. Filler metal can be either wire or rod and should be compatible with the base alloy. Filler metal must be dry, free of oxides, grease, or other foreign matter. If filler metal becomes damp, heat for 2 hours at 250°F (121°C) before using. Although ACHF is recommended, DCRP has been successful up to 3/32" (2.4mm), DCSP with helium shield gas is successful in mechanized applications.

TITA	NIUM	(DCSP)							
METAL	JOINT	TUNGSTEN		FILLER ROD CUP		.D GAS FLO	N	WELDING	TRAVEL
GAUGE	TYPE	SIZE	SIZE	SIZE	TYPE	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16"	NONE	4, 5, 6	ARGON	15 (7)	20	90–110	10" (256mm)
(1.6mm)	FILLET	(1.6mm)	NONE	4, 3, 0	AndON	15 (7)	20	110–150	8" (204.8mm)
1/8"	BUTT	3/32"	1/16"	5, 6, 7	ARGON	15 (7)	20	190–220	9" (230.4mm)
(3.2mm)	FILLET	(2.4mm)	(1.6mm)	5, 6, 7		15 (7)	20	210–250	7" (179.2mm)
3/16"	BUTT	3/32"	1/8"	670	ARGON	20 (10)	20	220–250	8" (204.8mm)
(4.8mm)	FILLET	(2.4mm)	(3.2mm)	6, 7, 8	AndON	20 (10)	20	240–280	7" (179.2mm)
1/4"	BUTT	1/8"	1/8"	1/8" 8, 10	ARGON	30 (15)	20	275–310	8" (204.8mm)
(6.4mm)	FILLET	(3.2mm)	(3.2mm)	0,10	ANUON			290–340	7" (179.2mm)

WELDING TITANIUM

Small amounts of impurities, particularly oxygen and nitrogen, cause embrittlement of molten or hot titanium when above 500°F (260°C). The molten weld metal in the heat-affected zones must be shielded by a protective blanket of inert gas. Titanium requires a strong, positive pressure of argon or helium as a backup on the root side of the weld, as well as long, trailing, protective tail of argon gas to protect the metal while cooling. Purge chambers and trailing shields are available from CK Worldwide to assist in providing quality results.

MAGNESIUM (ACHF)

IVIAU	NLOIC		·)							
METAL	IOINIT	TUNGSTEN	FILLER ROD	CUD	SHIELI) GAS FLO	N		TRAVEL	
GAUGE	JOINT Type	SIZE	SIZE	CUP Size	ТҮРЕ	CFH (L/MN)	PSI	WELDING AMPERES	SPEED	
1/16"	BUTT	1/16"	3/32" (2.4mm)	5,6	ARGON	12 (5)	15	60	20"	
(1.6mm)	FILLET	(1.6mm)	1/8" (3.2mm)	3,0	AndON	13 (5)	15	60	(512mm)	
1/8"	BUTT	3/32"	1/8" (3.2mm)	7,8	ARGON	19 (9)	15	115	17" (435.2mm)	
(3.2mm)	FILLET	(2.4mm)	5/32" (4.0mm)	7,0	AndON	19 (9)		115		
1/4"	BUTT	3/16"						100–130	22" (563.2mm)	
(6.4mm)	FILLET	(4.8mm)	5/32" (4.0mm)	8	ARGON	25 (12)	15	110–135	20" (512mm)	
1/2"	BUTT	1/4"	3/16" (4.8mm)	10	ARGON	35 (17)	15	260	10"	
(12.8mm)	FILLET	(6.4mm)	3/10 (4.011111)	10	AndON	33 (17)	15	200	(256mm)	

WELDING MAGNESIUM

Magnesium was one of the first metals to be welded commercially by TIG. Magnesium alloys are in three groups, they are: (1) aluminumzinc-magnesium, (2) aluminum-magnesium, and (3) maganese-magnesium. Since magnesium absorbs a number of harmful ingredients and oxiodize rapidly when subjected to welding heat, TIG welding in an inert gas atmosphere is distinctly advantageous. The welding of magnesium is similar, in many respects, to the welding of aluminum. Magnesium requires a positive pressure of argon as a backup on the root side of the weld.

THE STANDARD IN TIG WELDING TOLL FREE: (800) 426.0877 www.CKWORLDWIDE.com

DE0)	(IDIZE[) COPPE	R (DCSP))					
METAL	JOINT	TUNGSTEN	FILLER ROD	CUP	SHIELI	D GAS FLO	N	WELDING	TRAVEL
GAUGE	TYPE	SIZE	SIZE	SIZE	TYPE	CFH (L/MN)	PSI	AMPERES	SPEED
1/16"	BUTT	1/16"	" 1/16"		ARGON	18 (9)	15	110–140	12" (307.2mm)
(1.6mm)	FILLET	(1.6mm)	(1.6mm)	4, 5, 6	Andon	10 (3)	10	130–150	10" (256mm)
1/8"	BUTT	3/32"	3/32"	4, 5, 6	ARGON	10.00	15	175–225	11" (258.6mm)
(3.2mm)	FILLET	(2.4mm)	(2.4mm)		ARGON	18 (9)	10	200–250	9" (230.4mm)
3/16"	BUTT	1/8"	1/8"			36	15	190–225	10" (256mm)
(4.8mm)	FILLET	(3.2mm)	(3.2mm)	8, 10	HELIUM	(17.5)	15	205–250	8" (204.8mm)
1/4"	BUTT (2)	3/16"	1/8"	8, 10	HELIUM	36	45	225–260	9" (230.4mm)
(6.4mm)	FILLET	(4.8mm)	(3.2mm)	0, 10		(17.5)	15	250–280	7" (179.2mm)

WELDING DEOXIDIZED COPPER

Where extensive welding is to be done, the use of deoxidized (oxygen-free) copper is preferable over electrolytic tough pitch copper. Although TIG welding has been used occasionally to weld zinc-bearing copper alloys, such as brass and commercial bronzes, it is not recommended because the shielding gas does not suppress the vaporization of zinc. For the same reason zinc bearing filler rods should not be used. There is some preference of helium for the inert atmosphere in welding thickness above 1/8" (3.2mm) because of the improved weld metal fluidity. Preheating recommendations should be followed.

STAI	NLES	S STEEL	(DCSP)						
METAL	JOINT	TUNGSTEN	FILLER	FILLER CUP		SHIELD GAS FLOW			TRAVEL
GAUGE	TYPE	SIZE	ROD SIZE	SIZE	ТҮРЕ	CFH (L/MN)	PSI	WELDING AMPERES	SPEED
1/16"	BUTT	1/16"	1/16"	4.5.0	ARGON	11 (5.5)		80–100	12" (307.2mm)
(1.6mm)	FILLET	(1.6mm)	(1.6mm)	m) 4, 5, 6	AndUN	(0.0)	20	90–100	10" (256mm)
1/8"	BUTT	1/16"	3/32"	2"	ARGON	11 (F F)		120–140	12" (307.2mm)
(3.2mm)	FILLET	(1.6mm)	(2.4mm)	4, 5, 6	AKGUN	11 (5.5)	20	130–150	10" (256mm)
3/16"	BUTT	3/32" (2.4mm)	1/8"	F 0 7	, 6, 7 ARGON			200–250	12" (307.2mm)
(4.8mm)	FILLET	3/32" (2.4mm) 1/8" (3.2mm)	(3.2mm)	5, 6, 7		13 (6)	20	225–275	10" (256mm)
1/4"	BUTT	1/8"	3/16"	0 10	ARGON	12 (6)	20	275–350	10" (256mm)
(6.4mm)	FILLET	(3.2mm)	(4.8mm)	8, 10	ARGUN	ARGON 13 (6)		300–375	8" (204.8mm)

WELDING STAINLESS STEEL

In TIG welding of stainless steel, welding rods having the AWS-ASTM prefixes of E or ER can be used as filler rods. However, only bare uncoated rods should be used. Light gauge metals less then 1/16" (1.6mm) thick should always be welded with DCSP using argon gas. Follow the normal precautions for welding stainless such as: Clean surfaces; dry electrodes; use only stainless steel tools and brushes, keep stainless from coming in contact with other metals.

LOW	LOW ALLOY STEEL (DCSP)									
METAL	JOINT	TUNGSTEN	FILLER	FILLER CUP		D GAS FLOV	V	WELDING	TRAVEL	
GAUGE	TYPE	SIZE	ROD SIZE	SIZE	TYPE	CFH (L/MN)	PSI	AMPERES	SPEED	
1/16"	BUTT	1/16"	1/16"	45.6	ARGON	15 (7)	20	95-135	15" (384mm)	
(1.6mm)	FILLET	(1.6mm)	(1.6mm)	n) 4, 5, 6	AndON	15 (7)	20	95-135	15" (384mm)	
1/8"	BUTT	1/16" (1.6mm)	3/32"	4.5.0	ARGON			145-205	11" (258.6mm)	
(3.2mm)	FILLET	3/32 (2.4mm)	(2.4mm)	4, 5, 6		15 (7)	20	145-205	11" (258.6mm)	
3/16"	BUTT	3/32"	1/8"	7.0	ADCON	10 (0 5)	00	210-260	10" (256mm)	
(4.8mm)	FILLET	(2.4mm)	(3.2mm)	7,8	ARGON	16 (6.5)	20	210-260	10" (256mm)	
1/4"	BUTT	1/8"	5/32"	0.40	ARGON			240-300	10" (256mm)	
(6.4mm)	FILLET (2)	(3.2mm)	(4.0mm)	810		18 (8.5)	20	240-300	10" (256mm)	

WELDING LOW ALLOY STEEL

Mild and low carbon steels with less then 0.30% carbon and less than 1" (2.5cm) thick, generally do not require preheat. An exception to this allowance is welding on highly restrained joints. These joints should be preheated 50 to 100°F (10 to 38°C) to minimize shrinkage cracks in the base metal. Low alloy steels such as the chromium-molybdenum steels will have hard heat affected zones after welding, if the preheat temperature is too low. This is caused by rapid cooling of the base material and the formation of martensitic grain structures. A 200 to 400°F (93 to 204°C) preheat temperature will slow the cooling rate and prevent the martensitic structure.

Excessive Electrode Inclusion of accessive aperage for between the second of the second consumption Inclusion of the second of the second contaminated on the second constant and contaminated particles of the second contaminated on the second contaminated contaminated beam of the second contaminated on the second contaminated contaminated beam of the second contaminated on the second contaminated contaminated beam of the second contaminated on the second contaminated contaminated contact of the second contaminated contact of the second contaminated contact of the second contaminated contact of the second contaminated contact of the second contaminated contaminated contact of the second contaminated contact of the second contaminated contaminated contact contact contact contaminated contaminated contact of the second contaminated contaminated contact contact contact contact contaminated contaminated contact contact contact contact contaminated contaminated contact contact contact contact contact contact contaminated contact contact contact contact contact contact contaminated contact contact contact contact contact contaminated contact contact contact contact contact contact contact contact contact contact contaminated contact contact contact contamina	PROBLEM	CAUSE	SOLUTION			
Excessive Electrode Use larger electrode contamination Consumption Electrode contamination Renove contamination of the prepare again Excessive heating inside trich Replace collect, ty wedge collect or reverse collet Electrode contamination Replace collect, ty wedge collect or reverse collect Shield gas incorrect Change to progreg s(in oxygen) or Co2) Incorrect voltage (arc too long) Maintain short arc length Amperate too low for electrode size Use smaller electrode or commanded portion, then prepare again Joint too narrow Open joint prove Ontaminated shield gas, dat kalan on the electrode or weld bed indicate contamination Mate common cause is moliture or aspirated air in gas stnam. Use we grade gas or of commination and starce between electrode and filter metal Joint too narrow Open joint growe Mare common cause is moliture or aspirate chemical cleaners, wire bush or abrasives prior to we grade gas or commonded limits Inclusion of Tungsten or Accidental contact of electrode with puddle Maintain progrega or use larger electrode Maintain progrega or use larger electrode and clean the verse of arrow with or welding the verse gas lens or lose connection Porosity in Weld Depositi Entrapped inpurities, hydrogen, air, nitrogen, with reverse contaminated gas before those escape Contaminated gas befor those escape contaminated gas before those escape contaminated gas befor t		Inadequate gas flow				
Electrode Consumption Description Description Electrode contamination Renove contamination of Renove contamination of Renove contamination of the sec. per 10 amps Electrode contamination Renove contamination of Renove contamination of Renove Contamination starting technique Meant contamination of Renove contamination on Renove c		Improper size electrode for current required	Use larger electrode			
Consumption Excessive heating inside torch Electrode containing during cooling hieraace gas post flow time to 1 soc. per 10 apps bield gas incorrect Replace collect, ty wedge collet or reverse collet hieraace gas post flow time to 1 soc. per 10 apps bield gas incorrect Erratic Arc Incorrect voltage (arc too long) Maintain short arc length Amperage too low for electrode size Loss enailer electrode or increase amperage Electrode contaminated Remove contaminated portion, then prepare again Joint too narrow Open joint grove Contaminated shield gas, dark states on the electrode or weld bead indicate contamination West common cause is moliture or aspirated air in gas stream. Use we profe gas only. Find the source of contamination an eleminate it prome and program or gas only. Find the source of contamination an eleminate it prome and program or source of contamination an eleminate it prome and collar contact of electrode with puddie Accidental contact of electrode with puddie Maintain a distance between electrode and filter metal Using excessive electrode extension madequate shielding or excessive distroting extension madequate shield in gas contaction threase gas flow, shield act from wind, or use gas flow. Portosity in Weld Deposit Extrapped impurities, hydrogen, air, nitrogen, wire are hore to react and to improve the excessive electrode too not weld filter metal and filter material is only orousity.		Operating of reverse polarity	Use larger electrode or change polarity			
Electrode oxidizing during cooling Increase gas post flow time to 1 sec. per 10 angs Shield gas incorrect Change to proper gas (no vygen or Go2) Incorrect voltage (ar. to long) Maintain short are length Amperage too low for electrode size Use smaller electrode or increase amperage Electrode contaminated or not electrode size Use smaller electrode or increase amperage Inclusion of Joint to narrow Open joint groove Contaminated shield gas, dark stains on the electrode or weld bead indicate contaminated portion, then prepare again Most common cause is noisture or aspirated air in gas stream. Use we grade gas only. Find the source of contaminaton and eliminate it prom grade gas only. Find the source of contaminator ports wells wells of to well and contact of electrode with puddle Accidental contact of electrode with puddle Maintain proper are length Accidental contact of electrode statension Reduce electrode extension to recommedal limits Inadequate shielding or excessive datas Increase gas flow, shield are from wind, or use gas lens Worng gas On ont use A-G2 rA-Co2 GMA (Mit) gasses for TIG welding Heavy surface oxides not being removed Use A/G2 rA-Co2 GMA (Mit) gasses for TIG welding Parter allo a cort, goal relater all s adar goal relater all s adar goal relater all s adar goal relater allo adare goal relater all s adar goal relater allo adar goal re	Electrode	Electrode contamination	Remove contaminated portion, then prepare again			
Prosity in Weld Deposit Shield gas incorrect Change to proper gas (no oxygen or Co2) Erratic Arc Incorrect voltage (arc too long) Maintain short arc length Inclusion of Tungsten or Contaminated gas, dark stains on the electrode or weld bead indicate contamination Base metal is oxidized, dirfy or oily Use appropriate chemical cleaners, wire bush or abasives prior to well arged gas on yFind the source of contamination and eliminate it provide was appropriate chemical cleaners, wire bush or abasives prior to well arged gas on yFind the source of contamination and eliminate it provide arged gas on yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arged gas and yFind the source of contamination and eliminate it provide arger technole Inclusion of Tungsten or Oxides in Weld Accidental contact of electrode with puddle Maintain after arger electrode and the well and the source of or a gas lens in Woong gas Porosity in Weld Depositi Entrapped impurities, hydrogen, air, introgen, water vagor. Do not well on wet material. Remove controlestion from line with are hot shorts Cracking in Weld Argedus Filier material is olay or dusity	Consumption	Excessive heating inside torch	Replace collect, try wedge collet or reverse collet			
Protective transmission Maintain short are length Amparage too low for electrode size Use smaller electrode or increase amparage Electrode contamination Remove contamination proper again Donit too narrow Open joint groove Contaminated shield gas, dark stains on the electrode or weld bead indicate contamination Maintain short are length Base metal is oxidized, diry or oily Use agregation of the source of contamination and eliminate it promy grade gas only. Find the source of contamination and eliminate it promy accessive amparage for tungsten size used. Reduce amparage or use larger electrode Accidental contact of electrode with puddle Maintain proper are length Accidental contact of electrode to the order of Maintain proper are length Accidental contact of electrode to the rod Maintain proper are length Maintain proper are length Accidental contact of electrode to the rod Maintain a distance between electrode and filler metal Using excessive electrode catension Reduce amparage are use length Reduce amparage are use length Wrong gas Do not use Ar-02 CMA (Mito) gass for TG welding Heavy surface oxides not being removed Use Ar-02 CMA (Mito) gass for TG welding Filler material is darge (particular) suminum) Dry filler metal in overa prin to welding F		Electrode oxidizing during cooling	Increase gas post flow time to 1 sec. per 10 amps			
Amperage too low for electrode size Use smaller electrode or increase amperage Erratic Arc Amperage too low for electrode size Remove contaminated portion, then prepare again Joint too narrow Open joint groove Most common cause is mosture or aspirated air in gas stream. Use we detected or weld bead indicate contamination Base metal is oxidized, dirty or oily Use appropriate chemical cleances, with trusts use of contamination and eliminate it prom grades do nat allow scratch starts. Use coper strike plate. Excessive amperage for tungsten size used. Reduce amperage or use larger electrode Accidental contact of electrode with puddle Maintain proper arc length Accidental contact of electrode to filler rod Maintain a distance between electrode and filler metal Using excessive electrode extension Reduce amperage or use fare? Wrong gas Do not use Ar-02 or Ar-Co2 GMA (MG) gases for TG welding Marce vapor Use ACHF adjust balance control for mainum cleaning, or wire brush and delean the weld joint prior to welding. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, with adequate gas pre-flow time. Perfective gas hose or loose connection Check hoses and connections for leaks Filler material is oily or dusty Replace filler metal Altoy impurities in the base metal such as		Shield gas incorrect	Change to proper gas (no oxygen or Co2)			
Erratic Arc Electrode contaminated Joint to narrow Contaminated shield gas, dark stains on the electrode or weld bead indicate contamination Remove contaminated portion, then prepare again Open joint groove Inclusion of Tungsten or Oxides in Weld Poor scratch starting technique Most common cause is moisture or aspirated air in gas stream. Use we grade gas only. Find the source of contamination and eliminate it promy due to a propriate chemical cleaners, wire bruch or abraives prior to we Many codes do not allow scratch starts. Use copper strike plate. Use highly frequency are starter. Excessive amperage for tungsten size used. Reduce amperage or use larger electrode Accidental contact of electrode with puddle Accidental contact of electrode to the most oxides in Weld Maintain proper arc length Accidental contact of electrode to the most oxides and being removed Wrong gas Do not use Ar-02 or Ar-Co2 GMA (MG) gases for TIG welding Heavy surface oxides not being removed with a dequete gas per-how time. Do not weld on wet material. Remove condensation from line with a dequete gas per-how time. Porosity in Weld Deposit Entrapped impurities, hydrogen, air hitrogen, water vapor Do not weld n wet material. Remove condensation from line with a dequete gas per-how time. Entrapped impurities, hydrogen, air hitrogen, weld has no targe sheed? Do not weld n wet material. Remove condensation from line with are hot shorts Replace filter metal Heavy section or with metals thoy impurities. In the base metal such as sulphur, phosphrous, lead and rinc Filter mat		Incorrect voltage (arc too long)	Maintain short arc length			
Erratic Arc Joint to narrow Contaminated shield gas, dark stains on the electrode or weld baed indicate contamination Base metal is oxidized, dirty or oly Poor scarch starting technique Most common cause is misture or aspirated air in gas stream. Use we grade gas only. Find the source of contamination and eliminate it prom Use appropriate chemical cleances, wire bruch or abrasives prior to we May codes do nat allow scratch starts. Use coper strike plate. Use high frequency arc starter. Inclusion of Tungsten or Oxides in Weld Excessive amperage for tungsten size used. Accidental contact of electrode with puddle Maintain a distance between electrode attension Reduce electrode extension Reduce electrode extension Reduce electrode extension to recommended limits Inadequate shielding or excessive electrode use AOPF adjust balance control for tweeling Heavy surface oxides not being removed use AOPF adjust balance control for tweeling. Porosity in Weld Deposit Entrapped inpurities, hydrogen, air, nitrogen, with reducating gas pre-flow time. Defective gas hose or lose connection Check hoses and connections for leaks Piller material is oliv or dusty Alloy inpurities in the base metal such as sulphur, discoper the stating is blow they escape Contaminated gas shield Welds Charge to atternet alloy composition which is weldable. These impur accase a tandency of used ling inpurities. Cracking in Welds Cracking in Welds Cracking in heavy section or with metals which are to shorts Replace filer metal use a tantency to used ing inpurities. Cracking in the base metal with as a tracking in previous weld at edge, use Aptra for corrol to manually down singe apperage. Contaminated gas shield which are to shorts Cracking in Welds Cracki		Amperage too low for electrode size	Use smaller electrode or increase amperage			
Erratic Arc Contaminated shield gas, dark stains on the electrode or weld bade indicate contamination Base metal is oxidized, dirty or oily Por scracts starting technique Most common cause is mosture or aspirated air in gas stream. Use we Mary codes do not allow scratch starts. Use copper strike plate. Use appropriate chemical cleaners, wire brush or abrasives prior to we Mary codes do not allow scratch starts. Use copper strike plate. Use appropriate chemical cleaners, wire brush or abrasives prior to we Mary codes do not allow scratch starts. Use copper strike plate. Use appropriate chemical cleaners of electrode Accidental contact of electrode to filler rod Accidental contact of electrode to filler rod Maintain proper are length Accidental strike to excessive drafts Incaese gas flow, Miklog gases for TG welding Heavy surface oxides not being removed Heavy surface oxides not being removed Heavy surface oxides not being removed Entrapped impurities, hydrogen, air, nitrogen, water vapor Defective gas hose or loose connection Filler material is only or dusty Replace filler metal Altoy impurities in the base metal such as sulphur, phosphorus, lead and zinc Excessive travel speed with rapid freezing of weld trapping gases before they escape Fortawing asses hore to lose connection Filler material is admy or dusty Replace filler metal Altoy impurities in the base metal such as sulphur, phosphorus, lead and zinc Excessive travel speed with rapid freezing of weld trapping gases before they escape Fort weld cold cracking in heavy section or with metals which are hot shorts Revease direction and weld back into previous weld bacd con User metavals gas divide the joint edge or terminating the weld at the joint edge or tereminating the weld at the joint edge or tereminating the weld at		Electrode contaminated	Remove contaminated portion, then prepare again			
Porosity in Weld Deposit Entraped impurities, there are solution of the source of contaminate it prom use appropriate chemical clasmers, wire bursh or abrasives prior to we prade gas only. Find the source of contaminate it prom use appropriate chemical clasmers, wire bursh or abrasives prior to we be high frequency arc starter. Inclusion of Tungsten or Oxides in Weld Excessive amperage for tungsten size used. Reduce amperage or use larger electrode Accidental contact of electrode to filler rod Maintain ardian content of electrode extension inadequate shielding or excessive electrode with adequate gas pre-flow time. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not use A-02 or A-02 GMA (MM) gases for TiG welding in the material is darg (particularly aluminum) Dy filler metal in over prior to welding Filler material is darg (particularly aluminum) Dy filler metal and vell take into previous weld at edge. Use Aptra for to control to maintain durg as shield trapping gases before they escape Cortaminated gas shield trapping gases before they escape contaminated gas shield trapping gases before they escape in terstrant, rapid cooling, or hydrogen entrottlement coretact racacks in single pass welds underthead cracaking from thit	Errotio Aro	Joint too narrow	Open joint groove			
Base metal is oxidized, dirty or oily Use appropriate chemical cleancers, wire brush or abrasives prior to we Many codes do not allow scratch starts. Use copper strike plate. Use high frequency are starter. Inclusion of Tungsten or Oxides in Weld Accidental contact of electrode with puddle Maintain proparate cleangth Accidental contact of electrode to filler rod Maintain proparate cleangth Accidental contact of electrode to filler rod Accidental contact of electrode to filler rod Maintain a distance between electrode and filler metal Using excessive electrode extension Reduce alectrode extension to recommended limits Inadequate shielding or excessive drafts Increase gas flow, Midlog gases for TG welding Heavy surface oxides not being removed Use ACHF adjuts balance control for maintum cleaning, or wire brush and clean the weld joint prior to welding. Porosity in Weld Depositi Filler material is dong or dusty Replace filter metal. Filler material is only or dusty Replace filter metal. Chark sets and connections to relasks Filler material is admy or dusty Replace filter metal. Chark sets and weld back into previous weld at edge. Use part which are hot shorts Cracking in may section or with metals Wring gass bofter they escape Replace the shielding gas Cracking in keavy section or with metals Preheat, i	Effatic Arc		Most common cause is moisture or aspirated air in gas stream. Use weld			
Poor scratch starting technique Many codes do not allow scratch starts. Use copper strike plate. Use high frequency arc starter. Excessive amperage for tungsten size used. Accidental contact of electrode with puddle Maintain a distanta a distance between electrode and filler metal Maintain adistance between electrode and filler metal Using excessive electrode extension Inadequate shielding or excessive drafts More codes do not use A-20 crA C-20 EMA (MIG) gases for TIS welding Heavy surface oxides not being removed and clean the weld joint prior to welding. Poorsity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not use A-20 crA C-20 EMA (MIG) gases for TIS welding Filler material is dang (particularly aluminum) Do not weld on weld point prior to welding. Filler material is dang (particularly aluminum) Dr filler metal Filler material is olity or dusty Replace filler metal Alog impurities in the base metal such as sulphur, phosphons, lead and zinc Charge to a different aloy composition which is weldable. These impur can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape Replace filler metal Cracking in Welds Cracking in heavy section or with metals Preheat, increase weld bacd cross-section size, change weld bead cross- section and weld back into previous weld at edge. Use Aptrat for						
Inclusion of Tungsten or Oxides in Weld Excessive amperage for tungsten size used. Reduce amperage or use larger electrode Accidental contact of electrode with puddle Maintain proper arc length Accidental contact of electrode to filler rod Maintain proper arc length Accidental contact of electrode extension Reduce electrode extension to recommended limits Inadequate shielding or excessive drafts Increase gas flow, shield arc from wind, or use gas lens Wrong gas Do not use Ar-02 or Ar-022 drAmaximum cleaning, or wire brush and clean the weld joint prior to welding. Heavy surface oxides not being removed Use ACHF, adjust balance control for maximum cleaning, or wire brush and clean the weld joint prior to welding. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not weld on wet material. Remove condensation from line with adequate gas pre-flow time. Beferetive gas hose or loose connection Check hoses and connections for leaks Filler material is ding or dusty Altoy impurities in the base metal such as subpur, phosphorus, lead and zinc Chage to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape Reverse direction and weld back into previous weld at edge. Use Aptra for to control to manually down slope amperage. Orater ac						
Inclusion of Tungsten or Oxides in Weld Accidental contact of electrode with puddle Maintain a distance between electrode and filler metal Accidental contact of electrode to filler rod Maintain a distance between electrode and filler metal Inadequate shielding or excessive electrode extension to recommended limits Inadequate shielding or excessive drafts Increase gas flow, shield arc from wind, or use gas lens Wrong gas Do not use Ar-02 or Ar-Co2 GMA (MIG) gases for TIG velding. Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not use Ar-02 or Ar-Co2 GMA (MIG) gases for TIG velding. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not veld on wet material. Remove condensation from line with adequate gas pre-flow time. Filler material is dam (particularly aluminum) Do filler metal is dam of particular and an can cause a tendency to ravek when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape contaminated gas shield Replace the shielding gas Freheat, increase weld bead cross-section size, change weld bead con tuse metal with fewer alloy impurities. Use metal an with fewer alloy impurities. Cracking in Welds Crater cracks due to improperly breaking the arc or terminating the weld at the joint tedge Reverse direction and weld back into previous weld at edge. Use Aptra foot control to manually down slope amperage. Inadequate Shielding Excessive travel spe		Poor scratch starting technique				
Tungsten or Oxides in Weld Accidental contact of electrode to filler rod Maintain a distance between electrode and filler metal Using excessive electrode extension Reduce electrode extension to recommended limits Inadequate shielding or excessive drafts Increase gas flow, shield arc from wind, or use gas lens Wrong gas Do not use Ar-02 or Ar-Co2 GMA (MIG) gases for TIG welding Heavy surface oxides not being removed Use ACHF, adjust balance control for maximum cleaning, or wire brush and clean the weld joint prior to welding. Entrapped impurities, hydrogen, air, nitrogen, with adequate gas pre-flow twelding Do not weld on wert material. Remove condensation from line with adequate gas pre-flow welding. Filler material is oliny or dusty Replace filler metal Non weld on wert material. Alor inpurities in the base metal such as sulphur, phosphorus, lead and zinc Charage to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Cracking in Welds Crateminated gas shield Replace the shielding gas Protext, increase weld bead cross-section size, change weld bead cont Use metal which are hot shorts Reverse direction and weld back into previous weld at edge. Use Aptrat foot control to manually down slope amperage. Vert weld cracking in we weld at the joint edge Preheat, increase weld bead cross-section size, change weld bead cont Use metal with fewer alloy impurities. </td <td></td> <td></td> <td></td>						
Unique circle Using excessive electrode extension Reduce electrode extension to recommended limits Inadequate shielding or excessive drafts Increase gas flow, shield ar from wind, or use gas lens Wrong gas Do not use Ar-O2 or Ar-O2 of MA (MG) gases for TG welding Heavy surface oxides not being removed Use ACHF, adjust balance control for maximum cleaning, or wire brush and clean the weld joint prior to welding. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not use Ar-O2 or Ar-O2 of MA (MG) gases for TG welding. Filler material is damp (particularly aluminum) Do not used how wet material. Remove condensation from line with adequate gas pre-flow time. Filler material is olity or dusty Replace filler metal Ory prior metal Alloy impurities in the base metal such as sulptur, phosphorus, lead and ainc Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they secape Contaminated gas shield Replace the shielding gas Reverse direction and weld back into previous weld at edge. Use Aptrac for torking, the bash or the shorts Reverse direction and weld back into previous weld at edge. Use Aptrac for torming the weld at the joint edge Welds Grate cracks us to improperity breaking the arc or terminating gas shelof	Inclusion of	Accidental contact of electrode with puddle	Maintain proper arc length			
Oxides in Weld Using excessive electrode extension Reduce electrode extension to recommended limits Indequate shielding or excessive drafts Increase gas flow, shield arc from wind, or use gas lens Wrong gas Do not use Ar-O2 or Ar-Co2 GMA (MIC) gases for TIG welding Heavy surface oxides not being removed Use ACHF, adjust balance control for maximum cleaning, or wire brush and clean the weld joint prior to welding. Porosity in Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not weld on wet material. Remove condensation from line with adequate gas pre-flow time. Peterbing as hose or loose connection Check hoses and connections for leaks Entrapped impurities, hydrogen, air, nitrogen, water vapor Filler material is damp (particularly aluminum) Dry filler metal Check hoses and connections for leaks Filler material is oily or dusty Replace filler metal Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Cracking in Welds Toracking in heavy section or with metals Preheat, increase weld bead cross-section size, change weld bead construction to nanually down slope amperage. Post weld cold cracking, theavy section or with metals Preheat prior to welding, use preheat, prevent craters Replace the shielding gas Freheat prior to welding, user preheat, traito cold cold, cracking in heavy section	Tungsten or	Accidental contact of electrode to filler rod	Maintain a distance between electrode and filler metal			
Porosity in Weld Deposit Inadequate shielding or excessive drafts Increase gas flow, shield arc from wind, or use gas lens. Wrong gas Do not use A-02 or Ar-Co2 GMA (MIG) gases for TIG welding Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not use A-02 or Ar-Co2 GMA (MIG) gases for TIG welding Filter material is damp (carticularly aluminum) Do not weld on wer material. Remove condensation from line with adequate gas pre-flow time. Do not weld on wer material. Remove condensation from line with adequate gas pre-flow time. Porosity in Weld Deposit Filter material is damp (carticularly aluminum) Dry filter metal in over prior to welding Filter material is oily or dusty Replace filter metal Replace filter metal Alloy impurities, in the base metal such as sulphur, phosphrus, lead and zinc Contaminated gas sulphur, can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape Replace the shielding gas Cracking in Welds Fort cracking in heavy section or with metals which are hot shorts Reverse direction and weld back into previous weld at edge. Use Aptra for corter cracks due to improperly breaking the arc or terminating the weld at the joint edge Reverse direction and weld back into previous weld at edge. Use Aptra for control to manually down slope amperage. Inadequate Shielding Forehat, increase weld back into preveous weld at	•	Using excessive electrode extension	Reduce electrode extension to recommended limits			
Porosity in Weld Deposit Heavy surface oxides not being removed and clean the weld ploint prior to welding. Use ACHF, adjust balance control for maximum cleaning, or wire brush and clean the weld ploint prior to welding. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not well on wet material. Remove condensation from line with adequate gas pre-flow time. Check hoses and connections for leaks Filler material is damp (particularly aluminum) Dry filler metal not well on wet moter prior to welding Hiller material is oily or dusty phosphorus, lead and zinc Replace filler metal trapping gases before they escape Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Cracking in Welds Hot cracking in heavy section or with metals which are hot shorts Replace the shielding gas Cracking in Welds Crater cracks due to improperly breaking the acr or terminating the weld at the joint edge Preheat, increase weld bead cross-section size, change weld bead cont Use metal with fewer alloy impurities. Inadequate Shielding Excessive travel speed with rapid freezing of weld arabid control to manually down slope amperage. Indeced magnetic field from DC weld amperage Increase bead size. Decrease root opening, use preheat, prevent craters or tormination Welds Fost weld cold cracking, hydrogen embrittlement Locate and eliminate blockage or leak.		Inadequate shielding or excessive drafts				
Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not weld one the weld joint prior to welding. Porosity in Weld Deposit Entrapped impurities, hydrogen, air, nitrogen, water vapor Do not weld on wet material. Remove condensation from line with adequate gas pre-flow time. Porosity in Weld Deposit Defective gas hose or loose connection Check hoses and connections for leaks Filler material is damp (particularly aluminum) Dry filler metal More that the weld ding. Alloy impurities in the base metal such as sulphur, phosphorus, lead and zinc Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Cracking in Welds Contaminated gas shield Replace the shielding gas Crater cracks due to improperly breaking the arc which are hot shorts Preheat, increase weld bead cross-section size, change weld bead com Use metal with fewer alloy impurities. Crater cracks due to improperly breaking the arc wich are hot shorts Reverse direction and weld back into previous weld at edge. Use Aptrac foot control to manually down slope amperage. Post weld cold cracking, from brittle microstructure Increase to the weld joint cesign. Inadequate Shielding Excessive travel speed exposes molten weld to atmospheric contamination Welds Increase the flow rate to a safe texcessive travel speed exposes molten weld to atmospheric contamination <			(, , , , , , , , , , , , , , , , , , ,			
Porosity in Weld Deposit water vapor with adequate gas pre-flow time. Porosity in Weld Deposit Defective gas hose or loose connection Check hoses and connections for leaks Filler material is damp (particularly aluminum) Dry filler metal in over prior to welding Filler material is oily or dusty Replace filler metal Alloy impurities in the base metal such as sulphur, phosphorus, lead and zinc Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Lower the travel speed Contaminated gas shield Replace the shielding gas Hot cracking in heavy section or with metals Preheat, increase weld bead cross-section size, change weld bead crost Use metal with fewer alloy impurities. Cracking in Welds Crater cracks due to improperly breaking the arc or terminating the weld at the joint edge Reverse direction and weld back into previous weld at edge. Use Aptrac foot control to manually down slope amperage. Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Reverse direction and weld back into previous weld at edge. Use Aptrac foot control to manually down slope amperage. Inadequate Shielding Excessive travel speed exposes molten weld to atmospheric contamination Increase bead size. Decrease root opening, use preheat, prevent craters underbead cracking in hoses or torch Locate and eliminate blockage or leak. Excessive travel s		Heavy surface oxides not being removed				
Porosity in Weld Deposit Filler material is damp (particularly aluminum) Dry filler metal in over prior to welding Filler material is oily or dusty Replace filler metal Alloy impurities in the base metal such as sulphur, Dispoprorus, lead and zinc Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape Lower the travel speed Contaminated gas shield Replace the shielding gas Hot cracking in Welds Crater cracks due to improperly breaking the acr or terminating the weld at the joint edge foot control to manually down slope amperage. Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Preheat, increase weld back into previous weld at edge. Use Aptrac for control to manually down slope amperage. Underbead cracking from brittle microstructure Preheat prior to welding, use pure to non-contaminated gas. Increase to bead size. Pervent craters on rotches. Change the weld joint design. Inadequate Shielding Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Excessive tarvel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area </td <td></td> <td></td> <td></td>						
Porosity in Weld Deposit Filler material is oily or dusty Replace filler metal Must impurities in the base metal such as sulphur, phosphorus, lead and zinc Change to a different alloy composition which is weldable. These impur- can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape Contaminated gas shield Replace the shielding gas Preheat, increase weld bead cross-section size, change weld bead crost which are hot shorts Preheat, increase weld bead cross-section size, change weld bead cont Use metal with fewer alloy impurities. Cracking in Welds Crater cracks due to improperly breaking the arc or terminating the weld at the joint dege post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Reverse direction and weld back into previous weld at edge. Use Aptrac foot control to manually down slope amperage. Inadequate Shielding Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Ver Blow Wind or drafts Set up screens around the weld area Arc Blow Arc Blow Arcis unstable due to magnetic influences Reduce weld amperage. Short Yaris unstable due to magnetic influences Reduce weld admage and use are length as short as possible. Short reak short in the submetic influences Reduce weld amperage. Restrage reak in soge and the ade and and the add the power cable le		Defective gas hose or loose connection	Check hoses and connections for leaks			
Weld Deposit Find matching by 0 dusty Replace miler metal Alloy impurities in the base metal such as sulphur, phosphorus, lead and zinc Change to a different alloy composition which is weldable. These impur can cause a tendency to crack when hot. Excessive travel speed with rapid freezing of weld trapping gases before they escape Contaminated gas shield Replace the shielding gas Cracking in Welds Hot cracking in heavy section or with metals which are hot shorts Preheat, increase weld bead cross-section size, change weld bead com Use metal with fewer alloy impurities. Crater cracks due to improperly breaking the arc or terminating the weld at the joint edge Reverse direction and weld back into previous weld at edge. Use Aptract or terminating the weld at the joint edge Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlemet Shielding Reverse direction and weld back into previous weld at edge. Use Aptract or terminating the weld at the joint edge Inadequate Shielding Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Weid or drafts Set up screens around the weld area Set up screens around the weld area Excessive lectrode stickout Reduce electrode stickout. Use a larger size cup. Cracking in use Change to gas saver parts or gas lens parts. Inadequate Shielding Short WarteR-COOLED leads life	Dorooity in	Filler material is damp (particularly aluminum)	Dry filler metal in over prior to welding			
Importance of the control the control the control of the control of the control of the control the contrecontrecontend the control the control the control the	•	Filler material is oily or dusty	Replace filler metal			
Imadequate Shielding trapping gases before they escape Replace the shielding gas Cracking in Welds Hot cracking in heavy section or with metals which are hot shorts Preheat, increase weld bead cross-section size, change weld bead com Use metal with fewer alloy impurities. Cracking in Welds Crater cracks due to improperly breaking the arc or terminating the weld at the joint edge Reverse direction and weld back into previous weld at edge. Use Aptract foot control to manually down slope amperage. Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Preheat prior to welding, use pure to non-contaminated gas. Increase the bead size. Perevent craters or notches. Change the weld joint design. Underbead cracking from brittle microstructure Eliminate sources of hydrogen, joint restraint, and use preheat. Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Excessive travel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Short WATER-COOLED leads life Verify coolant flow dir	weid Deposit		Change to a different alloy composition which is weldable. These impurit can cause a tendency to crack when hot.			
Cracking in Hot cracking in heavy section or with metals which are hot shorts Preheat, increase weld bead cross-section size, change weld bead com Use metal with fewer alloy impurities. Cracking in Crater cracks due to improperly breaking the arc or terminating the weld at the joint edge Reverse direction and weld back into previous weld at edge. Use Aptract foot control to manually down slope amperage. Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Preheat prior to welding, use pure to non-contaminated gas. Increase the bead size. Prevent craters or notches. Change the weld joint design. Centerline cracks in single pass welds Increase bead size. Decrease root opening, use preheat, prevent craters or hydrogen, joint restraint, and use preheat. Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Excessive travel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area Excessive electrode stickout Reduce electrode stickout. Use a larger size cup. Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to as af eleute weld amperage. Rearrange the split ground connection. Arc Blow Short WATER-COOLED leads life			Lower the travel speed			
Cracking in Weldswhich are hot shortsUse metal with fewer alloy impurities.Cracking in WeldsCrater cracks due to improperly breaking the arc or terminating the weld at the joint edgeReverse direction and weld back into previous weld at edge. Use Aptract foot control to manually down slope amperage.Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Centerline cracks in single pass weldsPreheat prior to welding, use pure to non-contaminated gas. Increase th bead size. Prevent craters or notches. Change the weld joint design.Inadequate ShieldingGas flow blockage or leak in hoses or torch Excessive travel speed exposes molten weld to atmospheric contaminationUse slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup.Wind or draftsSet up screens around the weld areaExcessive turbulence in gas streamChange to gas saver parts or gas lens parts.Induced magnetic field from DC weld amperage Arc is unstable due to magnetic influencesReduce weld amperage and use arc length as short as possible.Short Parts LifeShort torch head lifeOrdinary style is split and twists or jams, change to wedge style.		Contaminated gas shield	Replace the shielding gas			
Cracking in Welds or terminating the weld at the joint edge foot control to manually down slope amperage. Welds Post weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlement Preheat prior to welding, use pure to non-contaminated gas. Increase the bead size. Prevent craters or notches. Change the weld joint design. Centerline cracks in single pass welds Increase bead size. Decrease root opening, use preheat, prevent craters Underbead cracking from brittle microstructure Eliminate sources of hydrogen, joint restraint, and use preheat. Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Excessive travel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Short torch head life Do not operate beyond rated capacity, use WAT			Preheat, increase weld bead cross-section size, change weld bead conto Use metal with fewer alloy impurities.			
WeldsPost weld cold cracking, due to excessive joint restraint, rapid cooling, or hydrogen embrittlementPreheat prior to welding, use pure to non-contaminated gas. Increase to bead size. Prevent craters or notches. Change the weld joint design.Inadequate ShieldingUnderbead cracking from brittle microstructureEliminate sources of hydrogen, joint restraint, and use preheat.Gas flow blockage or leak in hoses or torch Excessive travel speed exposes molten weld to atmospheric contaminationUse slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup.Wind or draftsSet up screens around the weld areaExcessive electrode stickoutReduce electrode stickout. Use a larger size cup.Excessive turbulence in gas streamChange to gas saver parts or gas lens parts.Induced magnetic field from DC weld amperage Arc is unstable due to magnetic influencesReduce weld amperage and use arc length as short as possible.Short Parts LifeShort torch head lifeOrdinary style is split and twists or jams, change to wedge style.	Cracking in		Reverse direction and weld back into previous weld at edge. Use Aptrack foot control to manually down slope amperage.			
Centerline cracks in single pass weldsIncrease bead size. Decrease root opening, use preheat, prevent cratersUnderbead cracking from brittle microstructureEliminate sources of hydrogen, joint restraint, and use preheat.Gas flow blockage or leak in hoses or torchLocate and eliminate blockage or leak.Excessive travel speed exposes molten weld to atmospheric contaminationUse slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup.Wind or draftsSet up screens around the weld areaExcessive electrode stickoutReduce electrode stickout. Use a larger size cup.Excessive turbulence in gas streamChange to gas saver parts or gas lens parts.Induced magnetic field from DC weld amperageChange to ACHF amperage. Rearrange the split ground connection.Arc BlowShort wATER-COOLED leads lifeShortCup shattering or breaking in useChange cup size or type, change tungsten positionShort collet lifeOrdinary style is split and twists or jams, change to wedge style.Short torch head lifeDo not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches	Welds	Post weld cold cracking, due to excessive joint	Preheat prior to welding, use pure to non-contaminated gas. Increase the			
Underbead cracking from brittle microstructure Eliminate sources of hydrogen, joint restraint, and use preheat. Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Excessive travel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area Excessive electrode stickout Reduce electrode stickout. Use a larger size cup. Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Short Parts Life Short torch head life Ordinary style is split and twists or jams, change to wedge style.			Increase bead size. Decrease root opening, use preheat, prevent craters.			
Inadequate Shielding Gas flow blockage or leak in hoses or torch Locate and eliminate blockage or leak. Shielding Excessive travel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area Excessive electrode stickout Reduce electrode stickout. Use a larger size cup. Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Short watter.COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Short Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches						
Inadequate Shielding Excessive travel speed exposes molten weld to atmospheric contamination Use slower travel speed or carefully increase the flow rate to a safe level below creating excessive turbulence. Use trailing shield cup. Wind or drafts Set up screens around the weld area Excessive electrode stickout Reduce electrode stickout. Use a larger size cup. Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Arc is unstable due to magnetic influences Reduce weld amperage and use arc length as short as possible. Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Ordinary style is split and twists or jams, change to wedge style. Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches						
Shielding Wind or drafts Set up screens around the weld area Excessive electrode stickout Reduce electrode stickout. Use a larger size cup. Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Arc is unstable due to magnetic influences Reduce weld amperage and use arc length as short as possible. Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches	Inadequate	Excessive travel speed exposes molten weld to	Use slower travel speed or carefully increase the flow rate to a safe			
Excessive electrode stickout Reduce electrode stickout. Use a larger size cup. Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Arc is unstable due to magnetic influences Reduce weld amperage and use arc length as short as possible. Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches	•	· ·				
Excessive turbulence in gas stream Change to gas saver parts or gas lens parts. Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc Blow Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc is unstable due to magnetic influences Reduce weld amperage and use arc length as short as possible. Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches	Siliciulity		· · · · · · · · · · · · · · · · · · ·			
Arc Blow Induced magnetic field from DC weld amperage Change to ACHF amperage. Rearrange the split ground connection. Arc is unstable due to magnetic influences Reduce weld amperage and use arc length as short as possible. Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches						
Arc Blow Arc is unstable due to magnetic influences Reduce weld amperage and use arc length as short as possible. Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches						
Short WATER-COOLED leads life Verify coolant flow direction, return flow must be on the power cable le Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Ordinary style is split and twists or jams, change to wedge style. Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches	Arc Blow					
Cup shattering or breaking in use Change cup size or type, change tungsten position Short collet life Ordinary style is split and twists or jams, change to wedge style. Short Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches						
Short collet life Ordinary style is split and twists or jams, change to wedge style. Short Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do no bend rigid torches			· · · · · · · · · · · · · · · · · · ·			
Short Short torch head life Do not operate beyond rated capacity, use WATER-COOLED model, do not operate beyond rated capacity, use WATER-COOLED model, do not bend rigid torches						
			Do not operate beyond rated capacity, use WATER-COOLED model, do not			
Ude juste dailooning, bulsing of biowing on the incorrect nowmeter the nowmeters operate at 35 net with Iow howe	Parts Life	Gas hoses ballooning, bursting or blowing off	Incorrect flowmeter, TIG flowmeters operate at 35 psi with low flows.			

CONNECT WITH US ON:

TRADEMARK NOTICES: Gas Saver,[™] Safe-Loc,[™] Flex-Loc,[™] Super-Flex,[™] Trim-Line,[™] Max-Flo,[™] Fail-Safe,[™] Steady-Grip,[™] and LaYZr[™] are registered trademarks of CK Worldwide, Inc.

Phone: 1.800.426.0877 Fax: 1.800.327.5038 CK Worldwide, Inc., PO Box 1636, Auburn, WA 98071 Back To Table of Contents

www.CKWORLDWIDE.com

© 2015 CK Worldwide, Inc. All rights reserved. S/WD # 109030 2.5K Printed 8/2015